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Abstract—This work presents the development and application
of a novel flood fill algorithm, FLood2, for turbulence charac-
terization built on the Lambda 2 criterion. Direct numerical
simulation (DNS) using the spectral element method (SEM) was
used to simulate helical coil flow at Reynolds numbers of 50,
100, and 500. Fourier analysis revealed these that cases did not
produce an adequate amount of turbulence, so the algorithm
was instead validated using data from turbulent flow in a
milli-structured serpentine channel. FL.ood2 analyzed vortex size
distributions, quantity, and positions across multiple )\, thresh-
olds, significantly extending the capability of the traditionally
qualitative Lambda 2 criterion. Results demonstrated that an
increase in Reynolds number led to smaller average vortex
volumes due to fragmentation of large vortical structures and
emergence of new small-scale structures. Likewise, an increase
in Reynolds number flattened the lower ), threshold volume
distributions. Stricter thresholds increased average vortex size,
matching the turbulent energy spectrum where most energy
comes from low frequency large-scale eddies. Future work will
involve applying FLood2 to higher Reynolds number simulations
in helical coils, and using vortex location data in symmetrical
geometries.

Index Terms—Vortex Detection, Turbulence Characterization,
Helical Coil, Lambda2, Fourier Analysis

I. INTRODUCTION

Helically coiled pipes are extensively used in engineering ap-
plications as they provide a more compact arrangement while
significantly increasing fluid mixing and heat transfer when
compared to straight pipes!!2. Practical applications of helical
coils include heat exchangers, ultrafiltration systems, rectifi-
cation and absorption columns, nanofluid transport, chemical
reactors, nuclear reactors, and various piping systems, making
them an important subject of research..

The primary physical mechanism responsible for greater
mixing and heat transfer in helical coils is the formation of
secondary flows structures known as Dean vortices. Dean
vortices are the result of an imbalance between centrifugal and
inertial forces acting on the fluid as it flows through a curved
geometry. These vortices induce a twin counter-rotating vortex
cross-sectional flow pattern that continuously transports fluid
from the pipe center toward the walll4l.

The flow characteristics of Dean vortices are highly de-
pendent on geometric parameters, fluid velocity, and fluid
properties. Specifically, the vortices are characterized by the

Dean number De, a dimensionless quantity defined as a
function of the Reynolds number Re and the ratio between
the coil pipe radius r, and the coil turn radius R, :
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At low Dean numbers, typically below 60, the secondary
flow is minimal, and the fluid behaves similarly to flow in a
straight pipe. As the Dean number increases into the range
of 75 to 200, the classic twin counter-rotating Dean vortices
develop and stabilize the flow, increasing the critical Reynolds
number and delaying the transition into the turbulent regime!'.
Dean numbers greater than this begin to generate secondary
instabilities, before eventually developing into incoherent tur-
bulencel¢l.

Flow through helical coils has been extensively investigated
in the literature, across a large range of Reynolds numbers and
geometric parameters'3>781. However, these have largely been
explored using finite volume methods (FVM) and finite ele-
ment methods (FEM), and results have been primarily focused
on pressure drops, friction factors, flow regime transitions, and
velocity profiles. Direct numerical simulation (DNS) using
the spectral element method (SEM) has been successfully
been applied in other geometries to fully resolve vortices
of all scales given its exponential convergence for smooth
solutions. This study applies DNS with SEM specifically to
a helically coiled geometry to achieve similar objectives.

The Lambda 2 criterion (A\y) remains one of the most
popular vortex detection and visualization methods, in large
part due to its robustness and computational simplicity!'%!1,
However, it’s nature is highly qualitative as it relies on an
arbitrary value cutoff, limiting its effectiveness as a quanti-
tative turbulence characterization method!'?. To address this
shortcoming of an otherwise robust method, this work outlines
the development and analysis of a flood fill algorithm designed
to quantitatively track the number, sizes, and spatial locations
of vortex structures across a range of A, thresholds.
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II. GEOMETRY AND MESHING

A. Helical Coil Geometry

As seen in Fig. 1, a helically coiled pipe can be uniquely
specified by three geometric parameters; the diameter of the
coils pipe, the turn diameter of the coil, and its pitch.
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Fig. 1: Parameterization of a helical coil pipe into it’s coil pipe diameter D),
turn diameter D,, and pitch p.

From these parameters, other geometric dimensionless groups
can be derived, notably the curvature and torsion :
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An increase in the dimensionless curvature number results in
stronger secondary vortices, so as the limit of the curvature
approaches 0, the velocity profile becomes that of a straight
pipe. Conversely, an increase in curvature results in a higher
pressure drop and a more delayed transition to the turbulent
regime. Higher torsion simply twists the twin Dean vortex
plane further away from the radial line connecting the inner
and outer walls, so the angle between that line and the vortex
plane grows as torsion increases!13-16.

The coil dimensions selected for this numerical study were
chosen based on an existing physical coil, and are summarized
in Table I. Matching these will allow for a direct comparison
with experimental results in future works.

TABLE I: GEOMETRIC PARAMETERS OF THE HELICAL COIL USED IN THE
PRESENT SIMULATIONS.

Parameter Size [mm)]
Pipe Diameter, D, 4.76
Turn Diameter, D, 54.8

Pitch, p 5.95

These parameter are equally used to calculate the conversion
ratio from Reynolds number to Dean number. For this specific
geometry, the Dean number is 3.4 times smaller than the
Reynolds number.

B. Mesh Generation

The mesh was generated using Gmsh, an open source 3D finite
element mesh generator!!”!. As seen in Fig. 2, the mesh is made

up entirely of structured hexahedral elements, with biased
edges on the pipe face to account for the steeper gradients that
occur normal to the wall of the pipe. An octagonal O-grid
was selected to reduce skew between cells at the transition
from boundary layer cells to pipe center cells.

Fig. 2: Axial cross-section through the helical coil showing the structured
hexahedral O-grid mesh with wall-normal boundary-layer refinement

As shown in Fig. 3, the computational domain spans two
complete turns to eliminate entrance effects and ensure a fully
developed flow, as this is the flow regime of interest. This
choice was made based on previous work using a similar
geometry which found that with a uniform inlet velocity the
downstream flow pattern no longer changed past an azimuthal
angle of ¢ = 240°Pl. To further accelerate profile develop-
ment, a fully-developed laminar flow profile for a straight pipe
was prescribed.

Fig. 3: Complete two-turn helical coil computational domain meshed with
structured hexahedral elements.

Given the SEM uses high-order polynomial basis functions to
approximate the solution within each element, the mesh used
here is significantly coarser compared to meshes typically
required by FEMs and FVMs.

C. p-type Refinement

Grid independence was assessed by performing p-type mesh
refinement, in which the polynomial degree of the spectral
elements are increased on a fixed hexahedral grid. The a priori
error estimate yields a proportionality of :

E o pmin(r,p) (4)
where h denotes the element size, p the polynomial order,
and r the regularity exponent of the exact solution. When the

flow field is sufficiently smooth, p is larger than r and so the
error proportionality becomes :



E x h? (5)
From this, it becomes clear that increasing p produces ex-
ponential convergence, whereas h-refinement alone achieves
only algebraic convergence!'l. In the present helically coiled
configuration with a smooth laminar inlet profile, it is safe to
assume the solution regularity exceeds the maximum p used,
meaning that p-type refinement attains spectral accuracy and
produces a more reliable estimate of convergence since the
bounded error decays exponentially!'”. P-type refinement was
preferred over hp-adaptation because of its simplicity and the
ability to reuse the same mesh for all Reynolds number cases.
Convergence of the bulk flow was verified by monitoring
the time-averaged viscous dissipation rate as a function of
the polynomial order. Based on Table II, the dissipation rate
exhibited negligible variation cross quadrature modes p = 3 —
5, confirming that the flow field is fully resolved using only
3 modes.

TABLE II: TIME-AVERAGED VISCOUS DISSIPATION RATES AT REYNOLDS
NUMBERS Re = 50,100,500 FOR POLYNOMIAL ORDERS p = 3—5, AND THEIR
PERCENT CHANGE FROM THE PREVIOUS QUADRATURE MODES.

Reynolds Quadrature Yigcoqs Change
Number Modes Dissipation
50 3 8.72e-4 -
4 8.73e-4 0.11%
5 8.72e-4 0.11%
100 3 3.498e-3 -
4 3.504e-3 0.17%
5 3.501e-3 0.09%
500 3 1.339¢-01 -
4 1.340e-01 0.07%
5 1.338e-01 0.15%

Boundary-layer resolution was quantified via the dimension-
less wall distance y™ :

(6)

where y is the distance from the wall to the first quadrature
point, v the kinematic viscosity, and .. the friction velocity
defined by

T n (7)

with wall shear stress
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The quadrature point distances normal to the wall required by
(6) are tabulated in Table III for the quadrature modes used.

TABLE III: DISTANCE FROM THE WALL TO THE FIRST QUADRATURE POINT FOR
EACH QUADRATURE MODE.

adrature .
QuMo deu Distance
1 /3
3 V5
1./3_2 /6
4 Wi-2/8
5 V-2 %

Wall shear was extracted using a post-processing utility, and
the maximum value was used to compute y*. The resulting
yT values in Table IV confirm that the near-wall region
is adequately resolved for all simulation cases with only 3
quadrature modes.

TABLE IV: MAXIMUM DIMENSIONLESS WALL DISTANCE 4% FOR EACH
REYNOLDS NUMBER AND POLYNOMIAL ORDER

Reynolds Quadrature n

Number Modes Change
50 3 0.112 -

4 0.113 0.89%

5 0.112 0.88%
100 3 0.235 -

4 0.237 0.85%

5 0.236 0.42%
500 3 0.820 -

4 0.830 1.22%

5 0.812 2.17%

III. SIMULATION SETUP

A. Nektar++ Spectral Element Method

Simulations were carried out with Nektar++, an open-source
spectral/hp element solver for the incompressible Navier—
Stokes equations”. The solver settings from the cases are
summarized in Table V. An implicit-explicit second-order
backward differentiation formula time integration scheme was
used, treating nonlinear convection explicitly to avoid expen-
sive iterative solves and diffusion implicitly for a larger time
step. The standard velocity correction scheme was selected
for the solver.

Gradient-jump penalty (GJP) stabilization was added to
help stabilize potentially under resolved simulations and
reduce oscillations between elemental boundaries. The GJP
scaling parameter is set using the number of pressure quad-
rature modes; the specific heuristic chosen was based on a
regression across the range of polynomial orders used(?!.

PDE aliasing can arise in simulations containing non-linear
terms, and geometric aliasing from curved geometries or
elements. Dealiasing strategies have proven themselves very
effective in enhancing the numerical stability of SEM simula-
tions. By increasing the number of quadrature points while
keeping the number of modes the same, energy in shorter
length scales can be properly resolved without a large runtime
penality(22-251,



The time step was configured to target a CFL value of 0.2,
keeping the simulation stable and the results time-accurate.

TABLE V: NEKTAR++ SOLVER SETTINGS FOR THE SIMULATION OF FLOW
THROUGH A HELICAL COIL.

Setting Value
SolverType VelocityCorrectionScheme
TimelntegrationMethod IMEXGear
GIJPJumpScale 0.8(P+1)™*
NUM_POINTS 3NUM_MODES
TimeStep At | CFL « 0.2

The boundary conditions of the problem are summarized
in Table VI. At the inlet, the velocity components in the face’s
plane, u and w, are set to zero, while the normal component v
follows a parabolic laminar profile offset in the y-direction by
one coil-turn radius and centered in z. No-slip conditions on
the pipe walls and homogeneous Neumann conditions at the
outlet are applied for the velocity fields. The pressure field is
subject to homogeneous Neumann conditions at the inlet and
walls, and a zero-valued Dirichlet condition at the outlet.

TABLE VI: BOUNDARY CONDITIONS FOR THE SIMULATION OF FLOW THROUGH
A HELICAL COIL.

Field Inlet Walls Outlet

u 0 0 oudn =0
2

v ,2*,,*(17(1%)) 0 dvdn =0

w 0 0 Owdn =0

p OPOn =0 OPOn =0 0

B. Simulation Cases and Execution

As shown in Table VII, three flow cases were simulated at
Reynolds numbers of 50, 100, and 500, corresponding to
Dean numbers of 14.7, 29.5, and 147.4, to cover regimes
from nearly straight-pipe behavior through the onset and full
development of Dean vortices. Each case proceeded through
three sequential phases where the solution was first advanced
for a short time at a low CFL of 0.01 to establish a stable
initial field. Next, the flow was developed over one residence
time at the target CFL of 0.2. Finally, an additional residence
time under identical conditions was simulated to collect the
time-averaged and instantaneous flow data.

TABLE VII: NEKTAR++ CASES FOR THE SIMULATION FOR THE SIMULATION OF
FLOW THROUGH A HELICAL COIL.

Case Reynolds Number Dean Number Max Inlet Velocity
[-] [-] [-] [m/s]
1 50 14.7 9.37e-3
2 100 29.5 1.88e-2
3 500 147.4 9.37e-2

To collect data for the temporal Fourier analysis, instanta-
neous velocity field values were collected at various points
in the pipe cross-section, shown in Fig. 4. The data points
were recorded one half-turn upstream of the outlet such that

the flow was fully developed at the sampling plane, and at
a frequency of once every 10 time steps to capture high
frequency modes.
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Fig. 4: Fourier analysis sampling point locations on pipe cross section 3 turn
upstream from the outlet.

IV. FLoob2 : TURBULENCE CHARACTERIZATION

A. L, Criterion Background

Identification and subsequently visualization of vortical struc-
tures is fundamental for characterizing coherent motions
within complex flows!?l,

Most detection methods are based on the velocity-gradient
tensor, J, including the Lambda 2 method, which is the
backbone of the algorithm being developed in this section.

— U7 — | 9v 9v du
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This transformation matrix can uniquely decomposed into two
physically distinct components: a symmetric strain-rate tensor,
S, and an antisymmetric rotation-rate tensor, 2.

T

S = % (10)
_JT

Q= % (11)

Physically, the symmetric strain-rate tensor represents fluid
deformation associated with stretching and compression with-
out rotation, whereas the antisymmetric rotation-rate tensor
represents the pure rotational motion of the fluid.

Under the assumptions of incompressibility, negligible vis-
cous effects, and negligible irrotational straining, the Navier—
Stokes equations simplify in a way as to allow the second-
order tensor combination Q2 + S§2 to directly correlate with
the existence of a local pressure minimum, which is a neces-
sary but not sufficient condition for a vortex corel!?l.

02482 = 1oep (12)
P



The symmetric strain tensor admits only real eigenvalues, and
thus positive and real eigenvalues for the square. Conversely,
the antisymmetric rotation tensor results in up to 2 imaginary
eigenvalues, which become negative and real when squared.
So, the combination of the squares of these two tensors results
in a symmetric tensor whose eigenvalues signs are determined
by whether the stress or rotation eigenvalues had the greater
magnitude. By taking the eigenvalues and sorting them,

{Aw) Ay Ag | = o(82 +02)
A1) S Ae) = A

(13)

the second eigenvalue Ay yields the A, criterion used for
vortex identification, which is the result of comparing the
weaker strain value with the rotation.

The magnitude of the second most negative eigenvalue is
directly proportional to the strength of rotation relative to
strain; a more negative A\, signifies a stronger vortex structure.
However, the practical implementation of the A, criterion
typically involves visualizing isocontours of it’s scalar field.
Determining the appropriate cutoff threshold for these con-
tours is completely qualitative, and common methods to select
this threshold include subjective visual inspection, or a fixed
volume fraction of the fluid domain for comparing multiple
flows®?"l. Both approaches introduce substantial variability
and limit the criterion’s effectiveness in quantitative turbu-
lence characterization or comparing trends across flows.

B. Algorithm Development and Analysis

To address the inherent subjectivity and limited quantitative
capabilities of the conventional A, method, a flood-fill-based
vortex characterization algorithm termed FLood2 was devel-
oped. This algorithm evaluates vortex structures across a range
of )\, threshold values, providing quantitative metrics such as
vortex size, quantity, and location.

The FLood2 algorithm initially computes the A, scalar
field from the simulated velocity field using the standard
Ay criterion. This scalar field is computed at mesh vertices
using the Nektar++ A, post-processing utility. To facilitate
subsequent quantitative analysis, the values initially defined
at mesh vertices are interpolated to cell centers by taking the
arithmetic average of the A, values at the cell’s eight vertices.

Additionally, the quantitative analysis requires computation
of the cell volumes. For fully structured hexahedral meshes,
each hexahedral cell volume is calculated by decomposing the
cell into a set of tetrahedra whose volumes are computed via
the scalar triple product. Given the consistent vertex ordering
guaranteed by the VTK standard, this decomposition and
volume computation is straightforward and unambiguous.

The core of the FLood2 algorithm uses a breadth-first
search (BFS) flood-fill. First, an adjacency map is created,
identifying neighboring cells based on the number of shared
vertices to allow for constant time lookup of neighbors. In
structured hexahedral meshes, two cells are neighbors if and
only if they share exactly four vertices.

For each A, cutoff in the range, the BFS process explores
contiguous cells whose A, values lie below a specified
threshold, marking each group of connected cells as a distinct

“island” or vortex region. A simple strategy for selecting the
range of threshold values will be detailed in Section V. For
each identified island, the algorithm records quantitative prop-
erties such as the total volume occupied by the vortex and its
volume-weighted centroid position. The pseudocode detailing
this procedure for a single threshold is provided in Algo-
rithm 1, where A is a cell adjacency map HashMap<Cell,

Cell>, and threshold is the A\, float threshold for that
iteration.

Algorithm 1: bfs(A, threshold)

1 visited « set()

2 islands « list()

3 for cell in A.keys():

4 | if cell in visited or cell. L2 > threshold:
| continue

stack « list(cell)

total_volume « 0.0

cell_count « 0

O 0 N AN W

weighted_moment « list(0,0,0)
10 | while stack is not empty:

11 curr « stack.pop()

12 if curr in visited:

13 | continue

14 visited.add(curr)

15 if curr..2 > threshold:

16 | continue

17 cell_count += 1

18 total_volume += curr.volume

19 weighted_moment += curr.volume * curr.centroid
20 for neighbor in A[curr]:

21 if neighbor not in visited:

22 | stack.push(neighbor)

23 | islands.append({

24 volume: total_volume,

25 centroid: weighted_moment / total_volume
% 1))

27 return islands

BFS is then run across the range of thresholds, as detailed
in Algorithm 2, where start and stop are the bounding
values for the A\, range, and m is the number of samples taken
in that range.



Algorithm 2: FLood2(A, start, stop, m)

1 thresholds « linspace(start, stop, m)

2 islands « map()

3 for threshold in tresholds:

4 | islands[threshold] < bfs(A, treshold)
5 return islands

Since FLood2 must examine every one of the n cells for each
of the m sampled )\, thresholds, its overall computational cost
scales as O(m *n), where n is the total cell count in the
mesh and m is the number of threshold values investigated.

C. Running in Parallel

A significant advantage of the FLood?2 algorithm is its inher-
ent parallelizability. First, the m sampled thresholds can be
trivially distributed, since each threshold’s flood-fill is entirely
independent from the others. This gives you embarrassingly
parallel scaling in the threshold dimension.

To achieve spatial parallelism within a threshold, the com-
putational domain can be partitioned into non-overlapping
subdomains using a graph partitioning library such as METIS.
Each subdomain, or rank, is assigned to one process or thread.
Within its subdomain, the worker only performs BFS on its
owned cells, and assigns unique island IDs. This generates
a set of local vortex islands labeled independently in each
partition. Because subdomains are disjoint, these BFS traver-
sals can be done concurrently without race conditions.

Because vortices can cross partition boundaries, local is-
lands that touch across ranks must be merged. This is done by
recording an equivalence relation: if a boundary cell in rank
A’s island a shares 4 vertices with a boundary cell in rank B’s
island b, then we record the equivalence (A4,a) ~ (B,b). In
other words, these islands are part of the same global vortex
if they contain any face connected cells. These equivalences
form a graph connecting local island IDs across ranks. To
resolve equivalences, a distributed union-find algorithm is
applied. This process assigns a single global component ID
to every island such that islands spanning multiple partitions
are stitched into one vortex. Finally, each rank contributes
its partial volume and centroid moment sums for its owned
cells, keyed by the global component ID; a global reduction
then produces the total volume and centroid of each stitched
vortex.

V. REsuLTs

A. Unfortunate Lack of Turbulence

After running the previously described simulations and per-
forming the Fourier analysis on the resulting velocity field
history points, it became evident that the flows did not
exhibit any turbulent characteristics. Consequently, there was
no turbulence to quantify or characterize. This absence of
turbulent behavior is particularly obvious when examining the
the velocity magnitude over time in Fig. 5, which shows a
steady velocity field devoid of any perturbations.
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Fig. 5: Velocity magnitude over time at Re = 500.

Looking at Fig. 6’s pipe cross-sectional velocity profiles at
Reynolds numbers of 100 and 500, the centrifugal forces
shift the velocity maxima towards the outer wall, and the
quiver plot overlay shows the beginning of the formation of
Dean vortices. At Re = 100 the profile remains essentially
laminar with only slight skewness; at Re = 500 increased
curvature and distortion appears near the outer boundary but
the flow retains clearly laminar characteristics. In both cases,
the secondary flow intensity is insufficient to induce transition
to turbulence. Based on experimental correlations, turbulence
would be expected at a Reynolds number of 9500 for a helical
coil with a coil radius to turn radius ratio of 11.578].

Fig. 6: Helically coiled pipe cross-sectional velocity magnitudes and vector
fields at Re = 100 (left) and Re = 500 (right).

Applying the FLood2 algorithm to these flow fields resulted
in the identification of only one continuous vortex region
encompassing nearly the entire fluid domain, confirming the
lack of discrete turbulent structures.

B. S8Z Geometry Turbulent Flow Characterization

Due to the absence of turbulence in the helical coil sim-
ulations, an alternative geometrical configuration, the SZ
geometry, was analyzed in a Reynolds number range where
turbulent flow conditions were known to exist.

Based on the of the velocity magnitude contours of cross-
sectional slices in Fig. 7, Reynolds numbers of 500 and
1000 create abundant turbulent structures, whose presence and
intensity increase notably as the Reynolds number is elevated.



Fig. 7: SZ geometry cross-sectional velocity magnitudes and vector fields at
Re = 500 (top) and Re = 1000 (bottom).

Likewise, after filtering out all positive A, regions and exam-
ining the cross section contour plot of the log of the A,
criterion in Fig. 8, a distinct shift in the vortical structures

can be seen, including significant changes in vortex sizes,
distributions, and quantities.

Fig. 8: SZ geometry cross-sectional of log;,(max(1, —\,)) at Re = 500 (top)
and Re = 1000 (bottom).

C. Quantitative Analysis using FLood2 Algorithm

Initial distributions of volume-weighted A, values offered
limited insight as they spanned many orders of magnitude.
However, once regions dominated by strain were excluded
and the remaining values transformed using the logarithm of
their absolute values, a clear log-normal distribution emerges,
shown in Fig. 9. This demonstrates that higher Reynolds
number flows produce stronger vortices, showing an approx-
imately 20% increase in average vortex intensity on the log
scale when doubling the inlet velocity. The skew in the distri-
butions reflect the fact that large, high-energy eddies fragment
into smaller structures more quickly than the reverse process,
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Fig. 9: Volume-weighted distribution of log;,(|\,]) after removal of positive
Ay values

S0 very strong vortices are rarer, suppressing the upper tail. A
slight reduction in standard deviation was also noted at Re =
1000, however, without additional data points the significance
of this correlation remains inconclusive. Most importantly of
all, these distributions help decide the range of lambda values
to sample FLood2 across; in this case, a range of log;(|A5])
=5 - 9 was selected sampled at 20 evenly spaced intervals to
resolve the behavior across thresholds.

Analyzing the relationship between the average vortex
volume and A, threshold in Fig. 10 indicates that increasing
the Reynolds number results in a smaller average vortex size,
despite the A, occupying a larger fraction of the flow field
at any given threshold. This behavior occurs because higher
Reynolds numbers generate small vortices in regions previ-
ously devoid of turbulence at a given time, as well as fragment
large vortices into multiple smaller vortices. This essentially
quantitates the qualitative observations from A, contour plots
previously discussed and seen in Fig. 8.
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Fig. 10: Volume-weighted distribution of log;,(|A,|) after removal of positive
Ay values

Looking at the distribution of vortex volumes within a single
Reynolds number rather than simply tracking the average
across Reynolds numbers also provides valuable insight. In
Fig. 11, the distribution of vortex volumes at Re = 500 shows



a progressive shift toward larger average sizes as the A\, cutoff
threshold increases. Although initially counterintuitive, this is
consistent with the turbulent energy spectrum, where most
kinetic energy comes from low frequency large-scale eddies,
so by filtering for high-intensity we naturally isolate fewer,
but bigger, coherent vortices. Note that the small oscillations
in the histogram bars are simply artifacts of having too few
samples given the bar resolution, and the quantization of
island volumes on a structured hexahedral mesh since there
are only a few discrete cell-volume values.
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Fig. 11: Volume-weighted distribution of log;(|A,|) after removal of positive
A, values

Increasing Reynolds number from 500 to 1000 in Fig. 12
altered the vortex size distribution by broadening and shifting
it towards larger vortices at lower ), thresholds. At the stricter
thresholds, the distribution remained largely unchanged, sug-
gesting that the increase in flow intensity at Re = 1000
primarily affected weaker vortices. Higher Reynolds numbers
would likely further shift the distributions towards larger
vortices even at stricter criteria.
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Fig. 12: Volume-weighted distribution of log;(|A5|) after removal of positive
A, values

VI. CoNcLUSION

This study originally aimed to characterize turbulence in a
helical coil using the newly developed FLood2 algorithm,
however, the simulations performed produced laminar flow
conditions and contained no turbulence, making quantitative
vortex analysis impossible.

To validate FLood2, it was instead applied to an SZ pipe
in a fully turbulent regime, where it successfully identified

coherent vortical structures, extracted quantitative metrics, and
enabled objective comparison of flow fields.

The next steps involve conducting helical coil simulations at
higher Reynolds numbers, and applying the FLood2 algorithm
on the resulting flow fields. Next, although vortex location
data was not analyzed in this study, collapsing symmetrical
geometries along their axis of symmetry to generate vortex-
density contours as a function of A, thresholds could yield
interesting results, as one could see how vortices shift in the
domain across flows and strength criteria.

To conclude, the FLood2 algorithm extends the Lambda 2
method and provides valuable quantitative insight that aligns
with traditional turbulence-characterization techniques.
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